博客
关于我
elasticsearch 与solr对比
阅读量:771 次
发布时间:2019-03-24

本文共 965 字,大约阅读时间需要 3 分钟。

Solr 和 Elasticsearch 是两个广泛使用的搜索引擎工具,各有其优势和适用场景。以下从多个维度对两者进行对比分析。

在搜索性能方面,Solr 在已有数据集 perform Search 时表现更优。其_REASON:由于索引在建立期间完成后,Solr 在查询时不会产生 IO 阻塞,因此对于预先建立好的索引,搜索效率较高。然而,当需要实时建立索引时(如数据实时 upload 后立即索引),由于需要先写入数据后再处理,Solr 的性能相对下滑,这时 Elasticsearch 显示出更强的优势。其原因在于,Elasticsearch 支持更高效的实时索引流程。

数据量不断膨胀时,Solr 的搜索效率会逐渐降低。这是因为 Solr 的架构设计主要优化了事务处理和小规模数据处理,而不是大规模/full-text 数据的高效搜索。相比之下,Elasticsearch 在数据量增长时表现更加稳定,搜索效率不会大幅下降。

在数据处理方面,Solr 不如 Elasticsearch 支持丰富的数据格式。Solr 支持的数据格式远多于 Elasticsearch 的 JSON 格式(事实上,Solr 本身也是基于 JSON 格式设计),因此在处理多类型数据(如文本、多媒体、结构化数据等)时,Solr 显示出更强的适用性。

但需要明确的是,Solr 是传统搜索应用的最佳选择。当需要处理实时搜索任务或复杂的分析查询时,Elasticsearch 显然更为理想。尤其是在处理日志分析、文本搜索等场景中,Elasticsearch 的优势更加明显。

在技术优势方面,Solr 的优势体现在简单、高效的架构设计上,使其成为传统搜索系统的首选工具。而 Elasticsearch 具备更强的灵活性和扩展性,适合新兴的实时搜索应用。因此,在选择时,开发者需要根据具体需求来决定——如果是典型的搜索应用,Solr 可能是更好的选择;但如果是需要处理实时或复杂分析任务的现代搜索场景,Elasticsearch 则更加理想。

对于已有用户来说,若已经投资 Solr,不需要hl必须迁移至 Elasticsearch 也无明显收获。但当需要扩展或新增功能时,考虑到未来的维护成本和技术趋势,Elasticsearch 的优势值得权衡。

转载地址:http://gsukk.baihongyu.com/

你可能感兴趣的文章
NLP 时事和见解【2023】
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP、CV 很难入门?IBM 数据科学家带你梳理
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP入门(六)pyltp的介绍与使用
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:从头开始的文本矢量化方法
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
NLTK - 停用词下载
查看>>
nmap 使用总结
查看>>
nmap 使用方法详细介绍
查看>>